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DIMETHYLSULPHIDE AND
OCEAN–ATMOSPHERE

INTERACTIONS

FIONA S. E. BUCKLEY and STEPHEN M. MUDGE�

School of Ocean Sciences, University of Wales, Bangor,
Menai Bridge, Anglesey LL59 5AB, UK

(Received 27 January 2004; In final form 4 February 2004)

Dimethylsulphide (DMS) is a trace sulphur gas found in most atmospheric and surface water samples, which
is derived from dimethylsulphonioproprionate (DMSP). Although it has been extensively studied over the last
50 years, its natural production, consumption and cycling are still not completely understood. Until recently,
DMS was believed to originate mainly from marine waters, but later studies have shown that estuaries and lakes
are also an important source of DMS. DMS also originates from terrestrial plants such as maize, wheat and
lichen, but it is not fully understood why. DMS is believed to have an important impact on the global
environment by influencing factors such as the acidity of the atmosphere, cloud condensation nuclei (CNN) and
solar insolation. The impact that humans have on the cycling of DMS and on its environmental impact is not
well understood either. DMS is affected by temporal and geographical factors, as well as physical factors such as
salinity and wind speed, yet when studied under El Niño conditions which modify these physical factors in vivo,
there was found to be no fluctuation in the concentration of DMS in the water column. This review outlines our
current state of knowledge on DMS.
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1 INTRODUCTION

DMS is a component of the atmospheric global sulphur cycle that is derived from DMSP, an

organic osmolyte that acts as a compatible solute in algal cells (Malin and Kirst, 1997). DMS

has been the subject of several studies, especially following the theory proposed by Charlson

et al. (1987) that DMS and its oxidation products are important in atmospheric chemistry and

global warming. This is because these compounds act as sulphur carriers from the oceans;

contribute to the acidity of the atmosphere and become a source of new particles, which

may affect the radiation balance of the atmosphere (Charlson et al., 1987). Although

several studies have been done, none of them have confirmed or disapproved completely

of this theory, nor has the cycling of DMS or its impact on the environment been completely

understood. This paper presents an up-to-the-moment review of the known literature and

summarizes our state of knowledge.
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1.1 What is Dimethylsulphide (DMS)?

Dimethylsulphide (CH3SCH3; Fig. 1) is the smallest member of the dialkyl sulphides or

aliphatic thioethers (Martin and Hauthal, 1971; Schöberl and Wagner, 1995). DMS is a

trace sulphur gas found in most atmospheric and surface water samples (Turner and Liss,

1985; Kim and Andreae, 1987) and is the dominant volatile sulphur compound present in

marine surface waters (Barnard et al., 1982; Andreae and Raemdonck, 1983). This com-

pound accounts for more than 95% of the observed reduced sulphur in surface ocean

waters (Cline and Bates, 1983), and it is considered to be the major source of sulphate aero-

sols in the marine troposphere (Bonsang et al., 1980). On the basis of its concentration and

turnover, DMS is one of the most important biogenic sulphur compounds in the marine

environment. It accounts for .50% of the total biogenic sulphur entering the atmosphere

annually, and approximately 90% of this DMS originates from marine sources (Andreae,

1990).

Estimates of the size of the total global DMS budget range from 15 to 109 Tg per annum

(Erickson III et al., 1990; Schlesinger, 1996). The main reasons for this large range are differ-

ences in the way that the marine portion, which is the largest part of the budget, is calculated

(Holligan et al., 1987). One approach involves the use of the measured seawater concen-

trations and a mass transfer coefficient (Liss and Slater, 1974); another is to base the flux

estimate on atmospheric concentrations and residence times (Wanninkhof, 1992). The con-

centrations are also affected by the composition of the marine water micro-layer which itself

is not well understood (Yang et al., 2001).

DMS is produced by enzymatic cleavage of DMSP, its precursor compound, which is

released by marine phytoplankton in the upper ocean and acts as a compatible solute in

algal cells (Malin and Kirst, 1997; Gabric et al., 2001). This is believed to be the most domi-

nant pathway for the production of DMS in saline environment (Andreae et al., 1983; Andreae

and Raemdonck, 1983; Ginzburg et al., 1998). DMS is also produced during chemical and bio-

logical metabolism of other methylated sulphur compounds like S-methylcysteine, syringate,

dimethylsulphoxide (DMSO), methylmercaptan (CH3SH) and dimethyldisulphide (DMDS;

Kiene, 1988; Finster et al., 1990).

After ventilation to the atmosphere, DMS is oxidized to form sulphate aerosols, which, in

the unpolluted marine atmosphere, are a major source of cloud condensation nuclei (CCN;

Gabric et al., 2001). Therefore, DMS has the potential to influence the radiative balance

and global climate patterns (Simó and Pedrós-Alió, 1999a).

1.2 Dimethylsulphonioproprionate (DMSP)

The existence of DMS in the environment is the result of a complex set of biochemical reac-

tions (Groene, 1995). The main precursor of DMS is DMSP ([CH3]2S
þCH2CH2COOH;

Fig. 2), which is similar in structure to the betaines (Cantoni and Anderson, 1956;

Blunden and Gordon, 1986; Kiene and Taylor, 1988).

FIGURE 1 DMS structure.
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DMSP is an abundant osmo-protectant produced and stored by marine phytoplankton,

macroalgae, cyanobacteria and coastal vascular plants (e.g. Spartina alterniflora). It can

be metabolized to DMS and acrylate by microbes using the enzyme DMSP lyase (Reed,

1983; Vairavamurthy et al., 1985; Dickson and Kirst, 1986; Dacey et al., 1987; Gröne

and Kirst, 1992; Baumann et al., 1994; Ansede et al., 2001). To protect their cells from dehy-

dration (due to osmotic pressure), it is thought that marine algae produce the zwitterion

molecule (DMSP) to act as an internal osmotic pressure regulator (Vairavamurthy et al.,

1985). DMSP is released continuously by living algae, as well as when algal walls are rup-

tured by copepod grazing, senescence or decay following bloom conditions, releasing the

intracellular DMSP into the water column or sediment (Vairavamurthy et al., 1985; Dacey

and Wakeham, 1986; Belviso et al., 1990; 1993; Wolfe et al., 1994; Nguyen et al., 1998).

DMSP is then converted to DMS by cleavage of the secondary S22C bond, also releasing

acrylic acid (Kelly and Smith, 1990). Kwint et al. (1996) showed that the DMS release or

production was not necessarily associated with the death of phytoplankton after a bloom

(Kwint and Kramer, 1995; Kwint et al., 1996). The enzymatic degradation of DMSP to

DMS and acrylate has been observed in marine and estuarine bacteria, fungi and algae

under several different physico-chemical conditions (Dacey and Wakeham, 1986; Kiene

and Visscher, 1987; Kiene, 1990; Stefels and van Boekel, 1993; Suzuki et al., 1997).

DMSP is an insoluble gas and is, therefore, degassed to the atmosphere rapidly. While in

solution, it may also undergo photo-oxidation to form dimethylsulphoxide (DMSO)

(Brimblecombe and Shooter, 1986).

1.3 Dimethylsulphoxide (DMSO)

Bacterial oxidation and photo-oxidation of DMS lead to the formation of DMSO

(Brimblecombe and Shooter, 1986). In return, DMSO can be reduced to DMS by marine bac-

teria (Zinder and Brock, 1987; Jonkers et al., 1996). New results indicate that DMSO in

aquatic environments can act as a significant source of DMS rather than a sink (de Mora

et al., 1996; Simó et al., 1999). DMSO is known to be a product from the addition

channel of the OH/DMS reaction. This has been shown in laboratory investigations

(Sørensen et al., 1996), but it has also been measured in field studies (Berresheim et al.,

1993; 1998).

2 SAMPLING

2.1 Atmospheric

One of the techniques used for the collection and analysis of atmospheric DMS is described

by Lee et al. (1999), in which air is drawn into trapping (absorption) tubes from a height of

FIGURE 2 DMSP structure.
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2 m above the surface. If the samples are stored under dark conditions, the analysis can be

done within 2–3 d of their collection without any detectable loss of DMS (Putaud et al.,

1999; Kim et al., 2000). Another method is to collect the samples with pressuring electro-

polished stainless steel sample bottles with air pumped from the main Pyrex glass manifold

using a metal bellows pump (Allan et al., 1999).

2.2 In the Water Column

Water samples have been collected using 5-l Niskin bottles, the ship’s biological pumping

system, the ship’s sea chest, or a polyvinyl chloride bucket. No significant differences in

DMS concentration were found when using various sampling methods (Bates et al.,

1987). A distinction can also be made between the sampling sources. In this case, surface

water samples were collected using lead-weighted glass bottles that were completely filled

to the brim and tightly sealed with Teflon-coated caps (Pio et al., 1996; Cerqueira and

Pio, 1999). In comparison with the surface seawater, the microlayer has so far received

little attention as regards the distribution of DMS and its influencing factors (Yang et al.,

2001), although Nguyen et al. (1978) among others found enriched DMS in the microlayer

(Nguyen et al., 1978; Yang, 1999). Another often-used method involves a gas-stripping

method to concentrate the DMS samples (Kwint and Kramer, 1995) followed by an analysis

of the DMS according to Lindqvist (1989) on a gas chromatograph equipped with a

capillary linear PLOT column and a photo-ionization detector with hydrogen as the

carrier gas (Lindqvist, 1989; Kwint and Kramer, 1995; Kwint et al., 1996). DMS can also

be analysed by sulphur-specific gas chromatography where it is measured in unfiltered sea-

water (Leylard and Dacey, 1996).

3 CYCLING OF DIMETHYLSULPHIDE

Sulphur is taken up by plants and algae and then reduced to form organosulphur compounds.

Marine algae produce DMSP, which has an osmoregulating function but may also be enzy-

matically cleaved to yield the volatile DMS (Dickson et al., 1980; Andreae, 1990). DMS is

released from the water column via an air–sea exchange and converts oxidatively into stable

end-products including non-sea salt sulphate (nss SO4
22), methane sulphonate (MSA) and

dimethylsulphone (Kiene and Bates, 1990; Berresheim and Eisele, 1997). These end-

products are capable of incorporating into the CNN, which in turn can affect the cloud

albedo as a function of cloud droplet size (Berresheim et al., 1998). Before being released

into the atmosphere, some part of DMS may be oxidized by bacteria (Kiene and Bates,

1990). DMS is a dominant fraction of the natural oceanic emissions and accounts for most

of the non-sea salt sulphate in the atmosphere above the remote open oceans (Bates et al.,

1992).

The amount of DMS released into the atmosphere is estimated at 12–58 � 106 t yr21

(Lelieveld et al., 1997). Because of its biological origin, DMS is normally restricted to the

upper 200 m of the water column with maximum concentrations near the bottom of the

mixed layer (Cline and Bates, 1983; Andreae and Barnard, 1984). Below this maximum,

the concentration decreases exponentially with near-zero concentrations (,10 pmol l21)

at 200 m. The surface layers are always observed to be supersaturated with DMS, implying

a net flux to the atmosphere (Barnard et al., 1982; Andreae and Raemdonck, 1983). Its

concentration in the oceans is believed to be regulated by a complicated interplay of algal

speciation and trophic interactions (Andreae, 1990). DMS has a diurnal cycle attributed to
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TABLE I DMS concentrations in sea water and marine atmosphere and fluxes (from marine water to the atmosphere) from the literature (units have been kept in their original
published form).

Location

Concentration Flux
Global estimates (Tg yr21/
Tmol S yr21)
Local estimates (nmol m22 h21) ReferenceMean Range

Oceanic
Atmosphere
Antarctica 806+ 300 ng m23 5.8+ 2.2 Tg yr21 Wylie et al., 1991
Atlantic Ocean 422+ 329 ng m23 15.6+ 12.3 Tg yr21 Andreae et al., 1985
Atlantic Ocean North 97 ng S m23 2–411 ng S m23 Andreae et al., 1985
Bahamas 122 ng S m23 5–670 ng S m23 Andreae et al., 1985
Equatorial Pacific 156+ 36 ng m23 2.9+ 0.7 Tg yr21 Andreae and Raemdonck, 1983
Equatorial Pacific 108+ 10 ng m23 1.7+ 0.2 Tg yr21 Bandy et al., 1993a,b
Equatorial Pacific 301+ 78 ng m23 6.5+ 1.8 Tg yr21 Andreae et al., 1985
Halley Bay (east Weddell Sea) 102 ng S m23 3.9–714 ng S m23 Davison et al., 1996
North Atlantic 122+ 122 ng m23 1.9+ 1.9 Tg yr21 Johnson and Bates, 1993
North Atlantic 152+ 81 ng m23 3.2+ 1.7 Tg yr21 Andreae et al., 1985
North Pacific 47+ 25 ng m23 1.7+ 0.9 Tg yr21 Andreae et al., 1988
Sargasso Sea 232 ng S m23 1–1014 ng S m23 Andreae et al., 1985
South Pacific 335+ 99 ng m23 7.2+ 2.3 Tg yr21 Andreae et al., 1985
South of Falkland Islands (in air) 73 ng S m23 ,0.1–714 ng S m23 Davison et al., 1996
Tropical Atlantic 125+ 56 ng m23 3.5+ 1.6 Tg yr21 Johnson and Bates, 1993
Tropical Atlantic 177+ 50 ng m23 6.6+ 2.0 Tg yr21 Andreae et al., 1985
Tropical Atlantic 213+ 43 ng m23 6.9+ 1.6 Tg yr21 Gregory et al., 1986
Tropical Atlantic 248+ 120 ng m23 9.2+ 4.5 Tg yr21 Putaud et al., 1992
Tropical Pacific 248+ 136 ng m23 9.2+ 5.1 Tg yr21 Nguyen et al., 1984

Water
Arctic Ocean 830+ 800 ng m23 5.9+ 5.8 Tg yr21 Hobbs et al., 1992
Atlantic Ocean south of the Azores

Islands
0.82 nmol l21 49 nmol m22 h21 Putaud and Nguyen, 1996

Atlantic Ocean Northeast 12 nmol S l21 1.06–93.8 nmol S l21 721 nmol m22 h21 Malin et al., 1993
Baltic Sea 0.06–6.24 nmol S l21 Leck et al., 1990
Equatorial Atlantic 213+ 43 ng m23 6.9+ 1.6 Tg yr21 Gregory et al., 1986
Grand banks 0.3 nM Scarratt et al., 2000
Gulf stream 0.3 nM Scarratt et al., 2000
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TABLE I Continued.

Location

Concentration Flux
Global estimates (Tg yr21/
Tmol S yr21)
Local estimates (nmol m22 h21) ReferenceMean Range

Gulf of Mexico 0.2–5.1 nM Kiene and Linn, 2000
Indian Ocean off the coast of

Australia
ND–6.0 nM Curran et al., 1998

Indian Ocean off the coast of
Australia

0.4–6.8 nM de Bruyn et al., 1998

Indian Ocean off the coast of
Australia

ND–5.6 nM Jones et al., 1998

Indian Ocean off the coast of
Australia

0.8–28 nM McTaggart and Burton, 1992

Labrador Basin 1.7–11.8 nmol l21 Schultes et al., 2000
Ligurian Sea 4.6 nmol S l21 Belviso et al., 1993
Mediterranean Sea Western 1.8 nmol S l21 0.1–4.3 nmol S l21 Simó et al., 1997
North Atlantic 112+ 20 ng m23 2.3+ 0.5 Tg yr21 Hewitt and Davison, 1997
North Atlantic drift 2.3 nM Scarratt et al., 2000
Pacific Ocean Northeastern 4.1 nmol S 1.54–10.82 nmol S Watanabe et al., 1995
Pacific Ocean 0.31–90.63 nmol S Bates et al., 1987
Sargasso Sea 0.4–2.1 nM Ledyard and Dacey, 1996
Sargasso Sea 2.2 nM Scarratt et al., 2000
South Pacific 41+ 9 ng m23 0.1+ 0.02 Tg yr21 Harvey et al., 1992
Vineyard Sound 2.3–5.6 nM Ledyard and Dacey, 1996
World oceans 3.0 nmol l21 0.6–1.7 (Tmol S yr21) Andreae, 1990

Coastal and shelf regions
Atmosphere
Antarctic Peninsula 44 ng S m23 9.37–204 ng S m23 Davison et al., 1996
Cape Grim, Tasmania 167 ng S m23 34–481 ng S m23 Andreae et al., 1985
Cheju Island Korea 19–1140 pptv Kim et al., 2000
North-west USA 207+ 194 ng m23 1.6+ 1.5 Tg yr21 Berresheim et al., 1993
North-west USA 69+ 19 ng m23 1.4+ 0.4 Tg yr21 Berresheim et al., 1993
North-west USA 136+ 37 ng m23 1.7+ 0.5 Tg yr21 Andreae et al., 1988
Water
Brittany, France 41+ 40 ng m23 0.5+ 0.5 Tg yr21 Nguyen et al., 1983
Brittany, France 868+ 372 ng m23 10.6+ 4.6 Tg yr21 Watts, 2000
Brittany, France 1581+ 1556 ng m23 31.5+ 31.2 Tg yr21 Putaud et al., 1999
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Brittany, France 1085+ 620 ng m23 21.6+ 12.5 Tg yr21 Putaud et al., 1999
Canal de Mira Portugal 2.9 (winter)–5.3

(summer) nmol l21
5.4 (winter)–27.3

(summer) nmol m22 h21
Cerqueira and Pio, 1999

Coastal and shelf regions 2.8 nmol l21 0.6–1.7 (Tmol S yr21) Andreae, 1990
Gulf of Mexico 0.8–2.9 nM Kiene and Linn, 2000
Gulf of St. Lawrence, east coast of

Canada
3.0 (summer) nmol l21 196 (summer) nmol m22 h21 Levasseur et al. 1997

Ligurian, coastal 16.2 nmol S l21 Boniforti et al., 1993
Mediterranean Sea Coastal

Western
4.9 nmol S l21 0.0–19.3 nmol S l21 Simó et al., 1997

North Sea 2.1 (summer) nmol l21 768 nmol m22 h21 Leck and Rodhe, 1991
North Sea 0.7 (winter)–7.5

(summer) nmol l21
73.3 (winter)–247

(summer) nmol m22 h21
Turner et al., 1996

Seawater around mainland Britain 0.12 (winter)–6.86
(summer) nmol S l21

0.03–34.31 nmol S l21 Turner et al., 1988

Seas surrounding Britain 0.1 (winter)–6.9
(summer) nmol l21

20.8 (winter)–1217
(summer) nmol m22 h21

Turner et al., 1988

Venice lagoon 0.85–16.3 nmol S l21 Moret et al., 2000

Others
Atmosphere
UK to Antarctica 54 ng S m23 0–714 ng S m23 Davison et al., 1996
UK to Falkland Islands 18 ng S m23 2.8–47 ng S m23 Davison et al., 1996
Water
Upwelling (coastal and equatorial

regions)
4.9 nmol l21 0.2–0.7 Tmol S yr21 Andreae, 1990

Temperate regions 2.1 nmol l21 0.1–0.3 Tmol S yr21 Andreae, 1990
Titanic NW Atlantic 1.0 nM Scarratt et al., 2000
Tropical and low-productivity

regions
2.4 nmol l21 0.2–0.6 Tmol S yr21 Andreae, 1990
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the rapid oxidation and removal of DMS by reactions with photochemically produced

hydroxyl radical (OH); in clean air, concentrations of OH follow a strong diurnal pattern,

with essentially zero concentrations during the hours of darkness (Logan et al., 1981). In

maritime influenced air masses, DMS concentrations are generally higher than in continental

air due to a lack of sources and an increase in oxidant concentrations (Davison et al., 1996).

In addition to this, DMS and DMSP are rapidly cycled in the water column due to the bac-

terial activity, with the flux of DMS to the atmosphere being highly dependent on factors

other than the production of cellular DMSP by phytoplankton alone (Kwint et al., 1996).

Until recently, DMS formation was found exclusively in saline waters and, therefore, was

regarded as insignificant in freshwater. Several recent studies revealed that this process

can be dominant in freshwater as well and that its product can affect the odour quality of

some drinking and recreational water systems (Ginzburg et al., 1998).

Estimates of the global sulphur emissions to the atmosphere show that 0.47–

2.2 Tmol S yr21 originate from natural sources, while 1.9–2.7 Tmol S yr21 are of anthropo-

genic origin. About 66% of natural sulphur emissions are accounted for by DMS, with a

range of 0.3–1.6 Tmol S yr21 (Aneja, 1990; Rodhe, 1999). Hydrogen sulphide and DMS

seem quantitatively to be the most important sulphur gases in coastal marine environments

(Steudler and Peterson, 1984).

Table I presents a listing of the mean DMS concentrations, their ranges and fluxes from a

series of marine measurements. The mean data have been used, where appropriate, to gen-

erate a schematic figure showing the mean concentrations and fluxes in the marine environ-

ment (Fig. 3).

4 SOURCES, SINKS AND FLUCTUATIONS

4.1 Sources

Natural sources of DMS are soils and plants, coastal wetlands and oceans (and as a gas

(Andreae, 1990)). DMS may be produced directly from phytoplankton cells and algal

cells or released when phytoplankton are subject to zooplankton grazing or bacterial

attack and digestion by zooplankton, or finally by bacterial transformation of algal-

derived DMSP (Cantoni and Anderson, 1956; Vairavamurthy et al., 1985; Dacey and

Wakeham, 1986). DMS can also be produced in the sediment from degradation of detritus

settled on the bottom of the water column (Andreae, 1985).

FIGURE 3 Schematic diagram of the mean concentrations of DMS in the oceanic and coastal waters, the flux to
the atmosphere and the concentration in the maritime air. Flux values are calculated from the tabulated data above.
The areal aspect of the flux has been preserved in making the calculation.
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It is generally considered that DMS concentrations in seawater are not closely associated

with phytoplankton biomass, although some correlations were sometimes found between

oceanic DMS concentrations and chlorophyll a (Andreae and Barnard, 1984; Barnard

et al., 1984; Andreae, 1990; Yang et al., 1999; Yang, 2000). Some micro-organisms, such

as the phototrophic purple bacteria, can generate DMS by reducing DMSO, though

DMSO is considered to be the dead-end metabolite in these micro-organisms (Zinder and

Brock, 1978; Jonkers et al., 1996).

There are some reports of anoxygenic phototrophic bacteria able to oxidize DMS photo- or

chemo-trophically to DMSO (Zeyer et al., 1987; Visscher and van Gemerden, 1991; Hanlon

et al., 1994; Kelly et al., 1994; Horinouchi et al., 1999). Most of the DMS-oxidizing photo-

trophs described are tolerant to high concentrations of sulphide, indicating that these bacteria

can reduce DMS emission rates in sulphidic environments (Vogt et al., 1997). Several

studies showed that Thiocapsa roseopersicina, an alga, is involved in the turnover

of DMS and DMSP (Jonkers et al., 1999). Dacey et al. (1987) suggested that Spartina alter-

niflora from salt marshes represents a considerable DMS source because of the high DMSP

concentrations within the plants, whereas uncovered sediment areas showed only small

DMS emissions or were DMS sinks (Dacey et al., 1987). In addition, Kiene (1988)

showed DMS emission from sediment cores only after inhibition of bacterial DMS consump-

tion and concluded that the biological DMS consumption is the main sink for the DMS

produced within the sediment (Kiene, 1988). Another example is that oceanic regions domi-

nated by Phaeocystis pouchetii, a significant producer of DMS, have high concentrations of

DMS (Barnard et al., 1984; Malin et al., 1992; Turner et al., 1995). In the water microlayer,

the most likely sources of DMS are in-situ production of phytoneuston and vertical export by

turbulent diffusion from the underlying water. The mean production rate of DMS in the

microlayer is more than twice that in the subsurface water (Yang et al., 2001).

4.2 Sinks

The dominant sink for DMS and DMSP in seawater is thought to be biological (bacterial

consumption, microbial degradation), but simple physico-chemical processes may be

active: ventilation into the atmosphere (air-to-sea exchange) and photochemical oxidation

of DMS (Brimblecombe and Shooter, 1986; Wolfe and Kiene, 1993; Osinga et al., 1996;

Malin and Kirst, 1997).

Research has suggested that microbial consumption was the most important sink for

seawater DMS (Kiene and Bates, 1990; Wolfe and Kiene, 1993; Simó and Pedrós-Alió,

1999b). Although the total amount of DMS entering the atmosphere from the ocean is sig-

nificant on a global scale, the sea-to-air emission may represent only a minor sink for

seawater DMS (Bates et al., 1994). Recent work indicated that the photochemical oxidation

of DMS, to DMSO or other products, accounts for only 7–40% of the total removal of DMS

from the surface mixed layer (Kieber et al., 1996). In contrast, Brugger et al. (1998) found

that 88% of the DMS was photolysed in the top 10 m of the water column (Brugger et al.,

1998). Recent studies indicate that halogen atoms and halogen oxides may also be important

sinks of DMS (Pszenny et al., 1993; George et al., 1994; Toumi, 1994).

The main sink for DMS in the atmosphere is its reaction with OH by day and NO3 by night

(Wilson and Hirst, 1996; Watts, 2000). The OH reaction can be either an abstraction or an

addition reaction: effectively, the two paths compete. However, only at low temperatures

(,300 K, temperate winter) is the addition reaction the major pathway (Wilson and Hirst,

1996). The NO3 reaction is an abstraction, with a reaction rate that is of the same order as the

OH abstraction. Kinetic studies indicate residence times of DMS in the atmosphere between

24 and 28 h dependent on atmospheric composition and temperature (Barnes et al., 1988; 1994).
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4.3 Fluctuations

Fluctuations in the DMS concentration seem to be generated by several factors. These factors

are often noticed in trends found during sampling. DMS is the only gaseous sulphur com-

pound which frequently showed a dependency on the tidal cycle with higher emission

rates at the beginning of the ebb tide and lower values at the end (Bodenbender et al.,

1999). Well-drained tidally flooded sites seem to produce much more DMS than similar

sites with poorer drainage (Hines et al., 1993). In addition to this, upwelling deeper ocean

water appears to have the highest mean DMS concentration because of elevated phytoplank-

ton levels in colder and more nutrient-rich water (Andreae et al., 1994), and the mixing-layer

depths (which are driven by climate) have a substantial influence on DMS yield on short

timescales (Simó and Pedrós-Alió, 1999a). Baumann et al. (1994) showed a clear tempera-

ture dependency of DMS emissions by phytoplankton (Baumann et al., 1994). This sub-

stantiates early statements that emissions of DMS by phytoplankton are related to

physiological stress (Kirst et al., 1991; Nguyen et al., 1998).

DMS can also be produced in the sediment by degradation of detritus settled at the bottom

of the water column (Andreae, 1985). Laboratory experiments with relatively undisturbed

sediment cores showed that microbial mats act as sinks for DMS under oxic/light (day)
conditions and as a source of DMS under anoxic/dark (night) conditions (Jonkers et al.,

1998). DMS emissions from intact microbial mats incubated under oxic/light conditions
were below the detection limit (,19 nmol m22 h21), and under anoxic/dark conditions,

emissions rates were 632+ 241 nmol m22 h21 (Jonkers et al., 1998). The loss of DMS

from surface waters is due to bacterial oxidation, photolysis and efflux to the atmosphere

(Brimblecombe and Shooter, 1986; Kiene, 1992; Kieber et al., 1996).

Kwint and Kramer (1996) showed that between 30 and 50% of DMS in the air above the

sea/air interface ventilates from the ocean during a 6-week window closely related to phy-

toplankton blooms. This correlates with the emerging idea that only in special circumstances

does the DMS concentration rise above normal background concentration (Kwint and

Kramer, 1996). More recently, van Duyl et al. (1998) and Wolfe et al. (1999) found that

DMS consumption appeared to be tightly coupled with production (van Duyl et al., 1998;

Wolfe et al., 1999). As might be expected, DMS emissions show strong seasonal and

spatial variability, reflecting the seasonality of growth and patchy distribution of DMSP-

producing marine phytoplankton (Malin and Kirst, 1997).

Abundant sources of DMSP are the various algal classes of phytoplankton as well

as several benthic macroalgae. In typical phytoplankton species, high concentrations of

DMSP are found in chlorophyll a/c algae (Dinophytes, Prymnesiophytes, some species of

the Bacillariophytes and the Chrysophytes and some diatoms) and the chlorophyll a/b-
containing Prasinophyceae (White, 1982; Reed, 1983; Dickson and Kirst, 1987a,b; Turner

et al., 1988; Keller et al., 1989; Karsten et al., 1990; Malin and Kirst, 1997). Its concentration

depends on biotic and abiotic factors such as light, salinity, temperature, season, cell age,

population density and composition (Reed, 1983; Vairavamurthy et al., 1985; Dickson

and Kirst, 1986, 1987a,b). However, it is important to note that fluxes reported in the litera-

ture are often obtained from summer values using a summer:winter ratio of 2.0–2.5; this

would affect the seasonality factor differently (Moret et al., 2000). DMS is accumulated

with increasing salinity, together with other low-molecular-weight organic compounds

(sugars, polyols, proline, etc.) and certain ions (Naþ, Kþ, Cl2), which balance changes in

external osmotic potential (Kirst et al., 1991).

Little is known about the spatial and temporal variation of bacterial DMS production and

consumption on oceanic scales. In particular, there is a lack of knowledge about the variation

of this activity as a function of temperature (Scarratt et al., 2000). High concentrations of
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DMS and DMSP can be found in areas of high algal productivity such as marine phytoplank-

ton blooms (Malin and Kirst, 1997). Therefore, factors affecting the growth of bacteria such

as grazing and nutrient limitations might also affect the relationship between DMSP turnover

and bacterial production, thus affecting the amount of DMS produced (Kiene and Linn,

2000). Microbial processes and bacterial production and consumption have been established

as both sources and sinks for DMS in seawater (Kiene and Bates, 1990; Kiene, 1992; Kwint

and Kramer, 1995; Kwint et al., 1996; Ledyard and Dacey, 1996; Wolfe et al., 1999).

However, there appears to be no direct correlation between chlorophyll a and DMS con-

centrations in oceanic surface waters (Dacey and Wakeham, 1986; Turner et al., 1989;

Bürgermeister et al., 1990; Leck et al., 1990).

The emission of DMS from terrestrial vegetation is also a little uncertain, due to the lack of

data from temperate and boreal regions, but more from tropical forests (Fall et al., 1988). Data

are available for tropical forests (Gregory et al., 1986; Andreae and Andreae, 1988; Jaeschke

et al., 1994), maize and wheat (Kanda et al., 1995) and lichen (Gries et al., 1994; Kuhn et al.,

1999). For other members of the terrestrial plant kingdom, data are lacking. However, quite

apart from the fact that some plants do emit DMS, there is a large amount of circumstantial

evidence that most vegetation is generally a source of DMS (Lovelock et al., 1972).

Several studies indicate that the distribution of DMS in coastal environments can be

subject to significant variability in both the temporal and spatial scales (Levasseur et al.,

1997; Kim et al., 2000). However, Andreae et al. (1994) demonstrated that the enhancement

of DMS emission rate could be due to physical factors such as wind speed and/or tempera-

ture. In addition to this, Yvon et al. (1996) and Warneke and de Gouw (2001) demonstrated

and observed that atmospheric DMS exhibits a diel cycle. This was due to photolytic destruc-

tion by OH radicals, and therefore, the DMS concentrations during daytime periods were low

relative to night-time periods (Yvon et al., 1996; Warneke and de Gouw, 2001). In marine

and estuarine systems, DMS is primarily derived from the degradation of DMSP (Kiene

and Capone, 1988). In freshwater habitats, formation of DMS originates mainly from the

methylation of sulphide and, to a lesser extent, from the degradation of sulphur-containing

amino acids (Kadota and Ishida, 1972; Finster et al., 1990; Kiene and Hines, 1995;

Lomans et al., 2001). Kirst et al. (1991) surveyed the ice algae in the Antarctic waters

and revealed the highest concentrations of DMS and DMSP measured to date (Gibson

et al., 1990; Flogelqvist, 1991; Kirst et al., 1991). Oligotrophic areas of the ocean typically

have relatively low DMS and DMSP concentrations and display only modest seasonal

variations (Kettle, 1999). Nevertheless, oligotrophic regions make up a large fraction of

the worlds oceans and, therefore, contribute significantly to the global DMS flux to the

atmosphere (Bates et al., 1992). DMS concentrations in oligotrophic waters can reach con-

centrations of 5–12 nM (Dacey et al., 1998).

The rate of DMS production depends directly on the concentration of DMS in surface

waters, which is controlled by complex production and removal processes that are closely

tied to the food web dynamics and physical factors such as air–sea exchange, water-

column mixing and photochemistry (Dacey et al., 1998). DMS emissions are dependent

on the seawater DMS concentration and the air–sea exchange, which is determined

mainly by the sea-surface temperature (SST) and the wind speed (McGillis et al., 2000).

The SST can influence the phytoplankton release of DMSP to the water (Watanabe et al.,

1995). Additionally, a lower SST generally would decrease the boundary layer height and

increase the DMS mixing ratio, even at a constant emission. Therefore, the DMS mixing

ratio is indirectly dependent on the SST. However, the gas-transfer velocity increases with

temperature because the gas solubility decreases (McGillis et al., 2000). Also, the net

production of DMS is regulated by the activity of the DMSP-cleaving, DMSP-demethylating

and DMS-oxidizing bacteria. This was shown by Jonkers et al. (2000), who observed a
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pronounced net production of DMS under anoxic/dark conditions and, in contrast, a minor

net production under oxic/light conditions. However, the net production of DMS from

DMSP is also affected by the competition for DMSP between the DMSP-cleaving and

DMSP-demethylating organisms (Jonkers et al., 2000).

5 MODELLING

One of the modelling methods used in evaluating the sea-to-air DMS fluxes is based on the

mass-balance photochemical-modelling (MBPCM) approach. Saltzman and Cooper (1989),

Thompson et al. (1990), Davidson and Hewitt (1992), Chen et al. (1999) and Davis et al.

(1999) are some of the researchers who used this method. As outlined by Chen et al.

(1999), to achieve the most reliable results using the MBPCM approach, the region under

investigation must have (1) a reasonably high degree of surface DMS homogeneity and

(2) gas-phase concentrations of DMS that reflect photochemical quasi-steady-state con-

ditions. Given that the boundary layer is well mixed, the final form of the mass balance

equation is as follows:

d½DMS�

dt
¼

FDMS

EMD
� (kOH½OH� þ kNO3

½NO3�)½DMS�

þ
1

EMD

ðhBUL
hBL

w
@½DMS(z)�

dz

� �
dz:

Here, EMD defines the DMS Equivalent Mixing Depth, which can best be represented by:

EMD ¼

Ð
½DMS(z)�dz

½DMS�BL
:

In this equation, the quantity [DMS]BL represents the average concentration in the marine

boundary layer (Chen et al., 1999). After using the MBPCM model, Shon et al. (2001)

suggested that further efforts should be made to incorporate the MBPCM flux approach

with the sea-to-air gradient and other flux methods. This is in addition to selecting a favour-

able location where meteorological conditions are stable, and where DMS consequently has a

short lifetime and a relatively uniform flux field (Shon et al., 2001).

Another type of model is the two-layer model of Liss and Slater (1974) used by, among

others, Putaud and Nguyen (1996), Levasseur et al. (1997) and Cerquiera and Pio (1999).

It estimates the emission of DMS in the atmosphere by assuming that the flux (F) of the

gas is proportional to the difference between the concentration in the surface water and

the equilibrium solubility concentration:

F ¼ Kw(Cw � CaH
�1),

where Kw is the transfer velocity, Ca and Cw are the gas concentrations in air and water,

respectively, and H is the dimensionless Henry’s law constant. As surface waters are

highly supersaturated with DMS, Cw is much greater than the atmospheric concentration,

and the term CaH
21 is usually neglected. Therefore, the previous equation may be

reduced to:

F ¼ KwCw:
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A third commonly used model is the Sulphur Box Model used by Chen et al. (2000). This

consists of 14 reactions which collectively describe the sources and sinks for nine different

sulphur species including DMS. The following equation shows the typical form that the

differential equation would take in achieving a mass balance for some arbitrary sulphur

species, S (e.g. DMS, DMSO or SO2):

d½S�BL
dt

¼
F

h
þ
M

h
(½S�BUL � ½S�BL)þ P(S)� L(S)½S�BL � kSL½S�BL:

The first term on the right-hand side represents the oceanic source strength, where F is

defined as the sea-to-air flux, and h is the marine boundary layer (BL) height, BUL is the

buffer layer (the transition zone between BL and the free troposphere), and M is defined

as K/DZ (with K as the mixing coefficient (Chen et al., 2000)). Davis et al. (1996) and

Crawford et al. (1999) are among many others who used the same model.

Several other models have been used, such as the compartment model for microbial mats.

The model is based on biological production and consumption of organic carbon, DMS,

hydrogen sulphide and oxygen (de Zwart and Kuenen, 1995; 1997), the box model of the

chemistry in the boundary layer (Carslaw et al., 1997; Allan et al., 1999) and the atmospheric

gas phase box model coupled to a three-mode integral aerosol dynamic. In this final case, the

simulations show the dependency of the concentration of nucleation mode particles on initial

pre-existing particles, the intensity of the UV radiation, the emissions of DMS and the ratio

of emissions of hydrocarbons (HC) and NOx present in the atmosphere (Pirjola and Kulmala,

1998). Finally, Prather et al. (1987) and Restad et al. (1998), among others, used a global 3D

chemical tracer model (CTM). It is a hindcast model and uses 1 yr of meteorological data

generated by the NASA-GISS GCM (Prather et al., 1987; Restad et al., 1998).

Unfortunately, there are some limitations to computer modelling of DMS, such as the

exact concentration of DMS in the atmosphere, which cannot be determined using a compu-

ter model, as our current knowledge of DMS photochemistry is not at its full capacity, and

therefore, dispersion and transportation must be included (Putaud et al., 1999). In addition to

this, accurate modelling of the biological DMS cycle in marine waters will require a dataset

that charts the variations in relevant kinetic parameters on a seasonal basis (Ledyard and

Dacey, 1996). However, some aspects of computer modelling are now considered as certain-

ties. For example, a mass balance photochemical modelling approach can be used to evaluate

the oceanic DMS flux; this method was previously used for other locations such as ground

basis and airborne platforms (Saltzman and Cooper, 1989; Ayers et al., 1995; Yvon et al.,

1996; Chen et al., 1999; Davis et al., 1999). A second certainty is that short-term kinetic

incubations show that the potential community DMS production in the open ocean is a

linear function of dissolved DMSP concentration and that it does not saturate. This

finding is potentially useful for predictive modelling of oceanic DMS production (Scarratt

et al., 2000).

6 DMS AND THE CLIMATE

DMS emitted from the oceans is rapidly photo-oxidized to sulphur dioxide, methane sulpho-

nic acid and sulphate aerosols that directly influence the earth’s radiation budget by back-

scattering a part of the incoming solar radiation. The aerosols also serve as CNN and

thereby increase the earth’s albedo (Andreae et al., 1995; Andreae and Crutzen, 1997).

DMS and its oxidation products are important in atmospheric chemistry because they act
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as sulphur carriers from the oceans, contribute to the acidity of the atmosphere and act as a

source for new particles, which may affect the radiation balance of the atmosphere (Charlson

et al., 1987). These atmospheric oxidation products are the major source of sub-micron

aerosol particles over remote marine areas, and these aerosol particles influence the global

climate directly by scattering and absorbing radiation and indirectly by affecting cloud

albedo (Shaw, 1983; Charlson et al., 1987; 1992).

The main radicals involved in the gas-phase atmospheric oxidation of DMS are OH2 and

NO3
2 (Patroescu et al., 1999). Furthermore, since oxidation products are mainly acidic, DMS

influences the pH of aerosols and rain in remote areas, e.g. the Antarctica and the North

Pacific as well as in lightly industrialized areas such as Ireland and Scandinavia (Wagenback

et al., 1988; Fletcher, 1989; Savoie and Prospero, 1989; Turner et al., 1989). There is a net

flux of DMS from the ocean to the atmosphere of the order of 15–45 Tg S yr21 (Andreae,

1990; Bates et al., 1994).

Several recent studies suggest that although emissions of anthropogenic sulphur dominate

on a global scale, rapid deposition close to source areas means that biogenic sulphur may

dominate the global sulphur burden (Malin and Kirst, 1997).

A study by Ayers et al. (1997) revealed that there was a clear seasonal relationship

between atmospheric DMS, its atmospheric oxidation products (methanesulphonic acid or

MSA, SO2, and non-sea salt sulphate), the concentration of CNN and cloud optical depth

(Ayers et al., 1997). This concurs with the controversial suggestion made by Charlson

et al. (1987) that the connection between DMSP-producing algae and clouds represented

a climate-regulating mechanism (Charlson et al., 1987). A schematic diagram indica-

ting the feedback mechanism is shown in Fig. 4. According to this theory, warmer ocean

FIGURE 4 Proposed feedback cycle between the climate and marine DMS production. The pluses and minuses
indicate whether an increase in the value of the preceding parameter in the cycle is expected to lead to an
increase (þ) or decrease (2) in the values of the subsequent parameter (after Andreae, 1990).
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temperatures resulting from global climate warming would stimulate processes leading to

the production of DMS. The enhanced DMS release would lead to increased formation

of sulphate aerosols and CNN. Increased light scattering and cloud cover would exert a

cooling effect on the climate, thereby counteracting the warmer trend. The existence of

this “global thermostat” has not yet been confirmed but there is evidence to support a

relationship between DMS-derived sulphate aerosols and climatic events (Falkowski et al.,

1992; Legrand, 1997; Legrand et al., 1997; Clarke et al., 1998), but the processes involved

may be more complex than predicted by Charlson et al. (Malin and Kirst, 1997). Several

authors postulated a regulatory effect of CNN on global warming (e.g. Ayers and Gras

(1991) and Charlson et al. (1991)), but Bates and Quinn (1997) concluded that Charlson

et al.’s (1987) hypothesized DMS-climate feedback link remains elusive. They sampled

the equatorial Pacific Ocean and noticed that the large inter-annual variations in oceanic

(sea-surface temperature, mixed layer depths and upwelling rates) and atmospheric (cloud

cover and precipitation) properties were associated with ENSO (El Niño-Southern Oscil-

lation) events. However, these changes had little effect on DMS concentrations in surface

ocean waters (Bates and Quinn, 1997).

Apart from the emission strength of the ocean, the atmospheric DMS mixing ratio is a

function of several parameters: the OH concentration, the boundary layer height and the ver-

tical exchange between the boundary layer and the free troposphere (Bandy et al., 1996).

Fluxes of DMS to the atmosphere depend on the steady-state concentrations of these com-

pounds in the sediment and the water surface layers. These steady-state concentrations are

the result of biological and chemical production and degradation (Kiene et al., 1986;

Lomans et al., 1997; 1999a,b).

7 DMS AND THE NATURAL MARINE ECOSYSTEM

DMS affects the natural marine ecosystems in at least three ways. Firstly, high concen-

trations of DMS are toxic and malodorous and can therefore lead to local environmental pro-

blems (de Zwart and Kuenen, 1992). Secondly, atmospheric oxidation products of DMS, as

well as contributing to acid precipitation, act as precursors for CCN (Charlson and Rodhe,

1982). Therefore, they potentially contribute to cloud formation (Charlson et al., 1987).

Thirdly, DMS is quantitatively the most important compound involved in the transport of

sulphur from oceanic to terrestrial areas (Lovelock et al., 1972).

8 HUMAN IMPACT

Man’s activity over the last 100–150 yr has perturbed the global sulphur cycle, especially in

the northern hemisphere, which receives about 90% of the anthropogenic inputs to the atmos-

phere (Houghton et al., 1996). Man-made emissions of sulphur are of the order of

93+ 15 Tg S yr21 (Jørgensen and Okholm-Hansen, 1985).

DMS can have a negative impact on the environment and on human health, as both the

liquid and vapour form of DMS are harmful to the skin, eyes and mucous membranes

(World Health Organization, 1989). There are no warning properties (no smell or initial

irritation), and the symptoms are delayed by a few hours. Therefore, a UK maximum

occupational exposure limit of 0.05 ppm of DMS related to an 8-h time weight average refer-

ence period has been set (Health and Safety Executive, 1997). DMS is used as a methylating

agent in organic synthesis and the production of pharmaceuticals, and as a quaternizing agent

in dyestuffs manufacture (Scobbie and Groves, 1998).
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9 CONCLUSION

DMS, its cycling and its role in the environment or the atmosphere, as well as its sinks and

sources, are still relatively poorly understood despite a considerable number of studies. One

of the reasons might be that all the observations have been made taking different aspects into

consideration. Another might be that DMS and all its components vary widely from one

location, and therefore it is not practical to compare results from, say, the Atlantic with

some of the Antarctic or an estuary. Also, most studies represent very short time periods

with a high temporal variability in the concentrations leading to an apparently large

spatial variation. Considering the proposed climate feedback that DMS may have on the

earth’s radiation budget by backscattering a part of the incoming solar radiation, effort

still needs to be directed towards this small chemical molecule with large potential effects.
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